'Who put the maths in chemistry?' Raising student awareness & selfefficacy in mathematical process skills in first-year chemistry.

Arti Singh & Gwen Lawrie
School of Chemistry & Molecular Biosciences

Michael Jennings
School of Mathematics & Physics

The University of Queensland

1st Year Chemistry: Assumed Maths Process Skills

Are we testing maths skills or chemistry skills?

The challenges:

- Maths process skills impact on solving problems
 (of course ... we formulate MCQ distractors based on this!)
- Units
 (chemistry is a minefield!)
- Critical reasoning does the answer make sense?
 (anything goes!)
 - Calculate the mass percentage in 5 g of the cereal

1363.56%w/w

The goals:

- Raise student awareness and confidence in their quantitative skills
- Provide resources which students can access in self-regulated study

Project timeline & evaluation (2012)

Additional data:

- Logs of completion of online activities and resource access via Bb
- UQ ethical clearance gained

Are we testing maths skills or chemistry skills?

Item	Stem	Category	% Both Correct & 'Certain'
1	Evaluate $2^3 + 3^2$	Exponents	83
2	Solve for x: $9/3 = 12/x$	Algebra	76
3	Solve for x: $(x-7)/0.3 = 20.2$	Algebra	88
4	Solve for x: $log_{10}(x-1) = 2$	Logarithm	41
5	Solve for x: $2^x = 32$	Exponent	59
6	What number is $(0.01)^{-1/2}$ equal to?	Exponent	53
7	Solve for n: $1.5 \times 2 = n \times 8 \times 2$	Algebra	62
8	Solve for T_1 : $500 - T_1 = 202$	Algebra	54
9	Solve for P_2 : $ln(100/P_2) = 0.4$	Logarithm	21
10	Solve for s: $s^2 - 2s - 8 = 0$	Quadratic	45
11	What number is $-\log_{10}[0.01]$ equal to?	Logarithm	46
12	Solve for t: $0.6 = e^{-0.00003t}$	Exponent	25

Midsemester exam question

$$T = 27 + 273 = 300 K$$

 $P = 2 \text{ bar} = 2 \times 10^5 \text{ Pa}$

At a temperature of 27.0 °C, a compressed gas cylinder contains				
15.0 L of nitrogen gas and the pressure gauge reads 2.00 bar.				
How many moles of gas does the cylinder contain?				
(A) 1.20 × 10 ⁻⁵ moles	3%			
(B) 8.32 × 10 ⁻⁴ moles	2%			
(C) 1.20 moles	65%			
(D) 0.83 moles	4%			
(E) 1.20 × 10 ³ moles	26%			

$$V = 15.0 L = 15 \times 10^{-3} m^3$$

$$PV = nRT$$

$$n = \frac{pV}{RT}$$

$$n = \frac{\left(2^{10^5}\right)(15^{10^{-3}})}{8.314^{300}} = 1.2 \, moles$$

Bb video focusing on QS

Web resources: abstract to course.

UQ chemistry tutor: connected to UQ community & context.

```
(1J = 1Pa. m^{3})
= 13.34817... Pam^{3}
= 8500 Pa
= 0.00017004... m^{3}
(1000L = 1 m^{3})
= 0.17004... L
= 0.17 L
```

Bb analytics indicated that this video was viewed > 1200 times.

Student self-awareness

'Thinking across the chemistry problem-solving exercises you have completed in this course, which mathematical process has troubled you the most?'

- Integration/differentiation (19%)
- Logarithms (17%)
- Quadratic equations (15%)
- Unit conversion (10%)

Example Comments:

"Understanding what the question is asking, knowing what to put into the formula and how to rearrange equations."

"The diagnostic test helped me to identify a problem area ... I required extra resources (a Maths in Chemistry textbook) to gain proficiency in algebra.."

The tip of the iceberg?

Acknowledgements

Mentoring Support Kelly Matthews (UQ)

Financial Support

2011 UQ Faculty of Science Teaching & Learning Grant (Kuchel, Matthews, Adams & Simbag)

